Question Paraphrase Generation for Question Answering System

نویسندگان

  • Haocheng Qin
  • Kun Xiong
  • Anqi Cui
چکیده

The queries to a practical Question Answering (QA) system range from keywords, phrases, badly written questions, and occasionally grammatically perfect questions. Among different kinds of question analysis approaches, the pattern matching works well in analyzing such queries. It is costly to build this pattern matching module because tremendous manual labor is needed to expand its coverage to so many variations in natural language questions. This thesis proposes that the costly manual labor should be saved by the technique of paraphrase generation which can automatically generate semantically similar paraphrases of a natural language question. Previous approaches of paraphrase generation either require large scale of corpus and the dependency parser, or only deal with the relation-entity type of simple question queries. By introducing a method of inferring transformation operations between paraphrases, and a description of sentence structure, this thesis develops a paraphrase generation method and its implementation in Chinese with very limited amount of corpus. The evaluation results of this implementation show its ability to aid humans to efficiently create a pattern matching module for QA systems as it greatly outperforms the human editors in the coverage of natural language questions, with an acceptable precision in generated paraphrases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating Embedded Question Reuse in Question Answering

The investigation presented in this paper is a novel method in question answering (QA) that enables a QA system to gain performance through reuse of information in the answer to one question to answer another related question. Our analysis shows that a pair of question in a general open domain QA can have embedding relation through their mentions of noun phrase expressions. We present methods f...

متن کامل

Boosting Passage Retrieval through Reuse in Question Answering

Question Answering (QA) is an emerging important field in Information Retrieval. In a QA system the archive of previous questions asked from the system makes a collection full of useful factual nuggets. This paper makes an initial attempt to investigate the reuse of facts contained in the archive of previous questions to help and gain performance in answering future related factoid questions. I...

متن کامل

Question categorization for a question answering system using a vector space model

The purpose of the thesis is to assign questions to sense categories, where the sense categories are represented by predefined paraphrase sets of questions. The paraphrase sets are available for each domain in the Question Answering system and consist of different framings of questions that will lead to the same answer in the Question Answering system. A Java program was developed for the categ...

متن کامل

ارایه یک پیکره‌ پرسش و پاسخ مذهبی در زبان فارسی

Question answering system is a field in natural language processing and information retrieval noticed by researchers in these decades. Due to a growing interest in this field of research, the need to have appropriate data sources is perceived. Most researches about developing question answering corpus area have been done in English so far, but in other languages as Persian, the lack of these co...

متن کامل

A Deep Generative Framework for Paraphrase Generation

Paraphrase generation is an important problem in NLP, especially in question answering, information retrieval, information extraction, conversation systems, to name a few. In this paper, we address the problem of generating paraphrases automatically. Our proposed method is based on a combination of deep generative models (VAE) with sequence-to-sequence models (LSTM) to generate paraphrases, giv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015